随着 Mixtral 8x7B (announcement, model card) 的推出,一种称为混合专家模型 (Mixed Expert Models,简称 MoEs) 的 Transformer 模型在开源人工智能社区引起了广泛关注。在本篇博文中,我们将深入探讨 MoEs 的核心组件、训练方法,以及在推理过程中需要考量的各种因素。
让我们开始吧!
简短总结
混合专家模型 (MoEs):
- 与稠密模型相比, 预训练速度更快
- 与具有相同参数数量的模型相比,具有更快的 推理速度
- 需要 大量显存,因为所有专家系统都需要加载到内存中
- 在 微调方面存在诸多挑战,但 近期的研究 表明,对混合专家模型进行 指令调优具有很大的潜力。
让我们开始吧!
什么是混合专家模型?
模型规模是提升模型性能的关键因素之一。在有限的计算资源预算下,用更少的训练步数训练一个更大的模型,往往比用更多的步数训练一个较小的模型效果更佳。
混合专家模型 (MoE) 的一个显著优势是它们能够在远少于稠密模型所需的计算资源下进行有效的预训练。这意味着在相同的计算预算条件下,您可以显著扩大模型或数据集的规模。特别是在预训练阶段,与稠密模型相比,混合专家模型通常能够更快地达到相同的质量水平。
那么,究竟什么是一个混合专家模型 (MoE) 呢?作为一种基于 Transformer 架构的模型,混合专家模型主要由两个关键部分组成:
- 稀疏 MoE 层: 这些层代替了传统 Transformer 模型中的前馈网络 (FFN) 层。MoE 层包含若干“专家”(例如 8 个),每个专家本身是一个独立的神经网络。在实际应用中,这些专家通常是前馈网络 (FFN),但它们也可以是更复杂的网络结构,甚至可以是 MoE 层本身,从而形成层级式的 MoE 结构。
- 门控网络或路由: 这个部分用于决定哪些令牌 (token) 被发送到哪个专家。例如,在下图中,“More”这个令牌可能被发送到第二个专家,而“Parameters”这个令牌被发送到第一个专家。有时,一个令牌甚至可以被发送到多个专家。令牌的路由方式是 MoE 使用中的一个关键点,因为路由器由学习的参数组成,并且与网络的其他部分一同进行预训练。
总结来说,在混合专家模型 (MoE) 中,我们将传统 Transformer 模型中的每个前馈网络 (FFN) 层替换为 MoE 层,其中 MoE 层由两个核心部分组成: 一个门控网络和若干数量的专家。
尽管混合专家模型 (MoE) 提供了若干显著优势,例如更高效的预训练和与稠密模型相比更快的推理速度,但它们也伴随着一些挑战:
- 训练挑战: 虽然 MoE 能够实现更高效的计算预训练,但它们在微调阶段往往面临泛化能力不足的问题,长期以来易于引发过拟合现象。
- 推理挑战: MoE 模型虽然可能拥有大量参数,但在推理过程中只使用其中的一部分,这使得它们的推理速度快于具有相同数量参数的稠密模型。然而,这种模型需要将所有参数加载到内存中,因此对内存的需求非常高。以 Mixtral 8x7B 这样的 MoE 为例,需要足够的 VRAM 来容纳一个 47B 参数的稠密模型。之所以是 47B 而不是 8 x 7B = 56B,是因为在 MoE 模型中,只有 FFN 层被视为独立的专家,而模型的其他参数是共享的。此外,假设每个令牌只使用两个专家,那么推理速度 (以 FLOPs 计算) 类似于使用 12B 模型 (而不是 14B 模型),因为虽然它进行了 2x7B 的矩阵乘法计算,但某些层是共享的。
了解了 MoE 的基本概念后,让我们进一步探索推动这类模型发展的研究。
混合专家模型简史
混合专家模型 (MoE) 的理念起源于 1991 年的论文 Adaptive Mixture of Local Experts。这个概念与集成学习方法相似,旨在为由多个单独网络组成的系统建立一个监管机制。在这种系统中,每个网络 (被称为“专家”) 处理训练样本的不同子集,专注于输入空间的特定区域。那么,如何选择哪个专家来处理特定的输入呢?这就是门控网络发挥作用的地方,它决定了分配给每个专家的权重。在训练过程中,这些专家和门控网络都同时接受训练,以优化它们的性能和决策能力。
在 2010 至 2015 年间,两个独立的研究领域为混合专家模型 (MoE) 的后续发展做出了显著贡献:
- 组件专家: 在传统的 MoE 设置中,整个系统由一个门控网络和多个专家组成。在支持向量机 (SVMs) 、高斯过程和其他方法的研究中,MoE 通常被视为整个模型的一部分。然而,Eigen、Ranzato 和 Ilya 的研究 探索了将 MoE 作为更深层网络的一个组件。这种方法允许将 MoE 嵌入到多层网络中的某一层,使得模型既大又高效。
- 条件计算: 传统的神经网络通过每一层处理所有输入数据。在这一时期,Yoshua Bengio 等研究人员开始探索基于输入令牌动态激活或停用网络组件的方法。
这些研究的融合促进了在自然语言处理 (NLP) 领域对混合专家模型的探索。特别是在 2017 年,Shazeer 等人 (团队包括 Geoffrey Hinton 和 Jeff Dean,后者有时被戏称为 “谷歌的 Chuck Norris”) 将这一概念应用于 137B 的 LSTM (当时被广泛应用于 NLP 的架构,由 Schmidhuber 提出)。通过引入稀疏性,这项工作在保持极高规模的同时实现了快速的推理速度。这项工作主要集中在翻译领域,但面临着如高通信成本和训练不稳定性等多种挑战。
混合专家模型 (MoE) 的引入使得训练具有数千亿甚至万亿参数的模型成为可能,如开源的 1.6 万亿参数的 Switch Transformers 等。这种技术不仅在自然语言处理 (NLP) 领域得到了广泛应用,也开始在计算机视觉领域进行探索。然而,本篇博客文章将主要聚焦于自然语言处理领域的应用和探讨。
什么是稀疏性?
稀疏性的概念采用了条件计算的思想。在传统的稠密模型中,所有的参数都会对所有输入数据进行处理。相比之下,稀疏性允许我们仅针对整个系统的某些特定部分执行计算。这意味着并非所有参数都会在处理每个输入时被激活或使用,而是根据输入的特定特征或需求,只有部分参数集合被调用和运行。
让我们深入分析 Shazeer 对混合专家模型 (MoE) 在翻译应用中的贡献。条件计算的概念 (即仅在每个样本的基础上激活网络的不同部分) 使得在不增加额外计算负担的情况下扩展模型规模成为可能。这一策略在每个 MoE 层中实现了数以千计甚至更多的专家的有效利用。
这种稀疏性设置确实带来了一些挑战。例如,在混合专家模型 (MoE) 中,尽管较大的批量大小通常有利于提高性能,但当数据通过激活的专家时,实际的批量大小可能会减少。比如,假设我们的输入批量包含 10 个令牌, 可能会有五个令牌被路由到同一个专家,而剩下的五个令牌分别被路由到不同的专家。这导致了批量大小的不均匀分配和资源利用效率不高的问题。在接下来的部分中,将会讨论让 MoE 高效运行的其他挑战以及相应的解决方案。
那我们应该如何解决这个问题呢?一个可学习的门控网络 (G) 决定将输入的哪一部分发送给哪些专家 (E):
发表评论
侧栏公告
寄语
譬如朝露博客是一个分享前端知识的网站,联系方式11523518。
热评文章
标签列表
热门文章
友情链接